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Abstract

The goal of this paper is to prove the existence theorem for any in-
variant differential operator on the nilpotent Lie group Gs. Out of the

Hormander condition, we prove the hypoellipticity for a remarkable
class of differential operators Gfs.
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1 Introduction and results.

1.1. Let (G5 be the real group consisting of all matrices of the form
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1 -z % 240 0 0 0

0 1 —X1 X3 0 O 0 0

0 0 1 2 0 0 0 0

0 0 0 100 0 0 )
000 0 0 1 @ 2 xp—22

0 O 0 0 0 1 x99 —23— 2179

00 0 000 1  —n

0 0 0 000 0 1

where 771 € R, 75 € R, 23 € R, 24 € R and 25 € R. Let K = R® be the group
with the following law
(75, T4, T3, T2, 1) (Y5, Y4, Y3, Y2, Y1)

1 1
= (x5 +ys+ 59019% — TaY3 + X12T2Y2, Ta + Ya + §$%?/2 — T1Y3, Y3 + T3 — T1Ya, T2 + Yo, T1 + Y1)

for any (3,24, 73, T2,21) € R5 and (ys, Ya, Y3, Y2, y1) € R®. The inverse of an
element (x5, x4, 3, T9,T1) 18

-1
(I’5,$4,[L’3,CE‘2,I1) (2)
2
L1 o Ty
= (—$5 - E% — T3, —T4 — ?9@ — X1X3, —¥3 — T1T2, —T2, —$1)

Dixmier had proved in [8, P.331] that there is a group isomorphism between
G5 and K. Thanks to this isomorphism, the group K can be shown as a

semidirect product R?® xR xR of the real vector groups R, R, and R?, where
P2 P1

ps is the group homomorphism p, : R — Aut(R?), which is defined by

P22 ) (Y5, Y, Y3) = (Y5 — T2Y3, Y4, Y3) (3)
and p, is the group homomorphism p; : R — Aut(R® x R), which is given by
P2
T x?
P1($1 )(y5,y4, Y3, yz) = (y5 + 7yz»y4 + Eyz — 21Y3,Y3 — $1y2>y2) (4)

where Aut(R3) (resp. Aut(R3 x R)) is the group of all automorphisms of (R?)
P2
(resp.(R3 x R)).
P2
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1.2. Let C*(K), D(K), D'(K), £'(K) be the space of C*- functions, C*>
with compact support, distributions and distributions with compact support
on G5 respectively. If M is an unimodular Lie group, we denote by L!(M)
the Banach algebra that consists of all complex valued functions on the group
M, which are integrable with respect to the Haar measure of M and multipli-
cation is defined by convolution on M , and we denote by L?(M) the Hilbert
space of M. Let U be the complexified universal enveloping algebra of the
real Lie algebra g of K; which is canonically isomorphic to the algebra of all
distributions on K supported by {0}, where 0 is the identity element of K.
For any u € U one can define a differential operator P, on K as follows:

Puf(X) = ux f(X /f Y X )u(Y)dy (5)

for any f € C®(K), where dY = dysdysdysdysdy; is the Haar measure
on K which is the Lebesgue measure on R°, Y = (ys,ya, Y3, Y2,%1), X =
(x5, 24, 3,22, 21) and * denotes the convolution product on K.The mapping
u — P, is an algebra isomorphism of U onto the algebra of all invariant
differential operators on K.

1.3. Let B = R? x R x R be the group of the direct product of R3 R and
R. We denote also by U the complexified enveloping algebra of the real Lie
algebra b of B. For every u € U, we can associate a differential operator @,
on B as follows

- /fX Y)u(Y)dy (6)

for any f € C*(B), X € B,Y € B. where %, signify the convolution prod-
uct on the real vector group B and dY = dysdysdysdy,dy; is the Lebesgue
measure on B. The mapping u — @), is an algebra isomorphism of U onto
the algebra of all invariant differential operators on B, which are nothing but
the algebra of differential operator with constant coefficients on B. For more
details see[8, 18]
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2 Existence Theorem.
2.1. Let L=R>*xR xR xR xR be the group with law:

XY

= (-7:57x47$3yx27t27x17t1)(y5ay47y37y27827y1781)
= (((zs, 24, T3, w2, 12, 1) (01 (1) (Y5, Y4, Y3, 52))s Y1 + @1, t1 + 51)

t 12
= (x5, 24, 23) + (pa(t2)(ys + —153a Yo+ =82 — t1Yz, Yz — t182)),
2 2
Ty + Yo, ta + S2, Y1 + T1, 11 + 51)
t t2
= (x5 +uys+ 5133 — tays + t1taSa, g + Ys + 5182 — t1ys, v3 + Y3 — 1152,
Ty + Yo, to + So, Y1 + 1, t1 + 51) (7)

for all X = (25,24, 73, 72,t2,21,t1) € L and Y = (ys, ya, Y3, Y2, Y1, 52, 51) €
L. In this case the group G5 can be identified with the closed subgroup
R3 x {0} x Rx {0} xR of L and B with the subgroup R? x R x {0} xR x {0}
of L.

Definition 2.1. For every f € C*®(G5), one can define function f €
C>(L) as follows:

f(@s, T4, 23, 02, b2, 21, 1) (8)
- f((p1($1)(p2(:(:2)(:v5,x4, Ig))), Tg + t2)7*r1 + tl)

for all (x5, x4, 23, T2, ta, 21,t1) € L.
Remark 2.1. The function f is invariant in the following sense:

f((m(h)((/b(k)(%?1347173))7 Ty — kat? + k)), Ty — hv tl + h)

= f(x5, 74,73, T2, 12,71, 11) 9)

for any (x5, x4, x3,29,t5,21,11) € L, h € R and k € R. So every func-
tion (x5, x4, 23,9, 21) on G5 extends uniquely as an invariant function
@(I5,$4,I3,I2,t2,$1,t1) on L

Theorem 2.1. For every function F' € C*°(L) invariant in sense (9) and
for every ueld, we have

U *F($5,$4,$3,$2,t27$1,t1) = U *c F(I‘5,$4,$3,$27t2,$1,t1) (10)
4
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for every (x5, x4, x3, o, ta, x1,t1) € L, where * signifies the convolution prod-
uct on G5 with respect the variables (s, x4, x3,t2,t1) and *.signifies the com-
mutative convolution product on B with respect the variables (x5, x4, x3, T2, T1).

Proof: In fact we have

PuF(xg,,x4,$3,a}2,t2,x1,t1)
= ux* F(l'5,$4,l‘3,$2,t2,a71,t1)
- /F[<y5,y4,y3,yg,S)_I(ZL’57J]4,133,[E27t2,.§(]1,t1>]
Gs
w(Ys, Yar Y3, Y2, 8)dysdyadysdysds
= /F[(Pl(s_l)(y&y%y&92)_17—8)(935,3347553,$2,t2,331,t1)}
Gs
U(Z/47 Y3, Y2, S)dy5dy4dy3dy2d8
= /F [(p1 (™) ((pa(y2 ) (—Yss —ya, —ys) (w5, B4, 23, 22)), B2 = Y2, 21, 11 — 5)]
Gs
U(?J& Ya, Y3, Y2, S)dysdy4dygdyzd8

= /F (o1 (s~ ) ((p(ya ) (@5 — ys, 24 = Ya, X3 — y3), T2, by — Y, &1, ty — S)]

Gs
w(Ys, Ya, Y3, Y2, §)dysdyadysdysds
= U*c F<x5,x47ﬂf3,x2,t2,$17t1) = QuF<x5aI47'x37x27t27x17t1) (11)

By the invariance of F, we get:
PuF<:U5a T4,T3,T2, t?a xy, tl)

- U*F(x5,a74,$37$27t2,l'1,t1)

= /F [(p(s ) ((p(yy ) (@5 — Y5, T4 — Ya, T3 — Y3), T2, by — Yo, L1, 11 — 5)]
Gy
w(Ys, Yar Y3, Y2, 8)dysdyadysdysds

= /F (5 — Vs, Ta — Y4, T3 — Y3, Ta — Yo, lo, X1 — S, 11)]

Gy
u(y57 Ya, Y3, Y2, S)dy5d3/4dy3dy2d5
= U * F(Z’5,$4,l’3,l‘2,t2,$1,t1) = QuF(x57$47x37x?at%'rlvtl) (12)
5
IJSER © 2016

http://www_.ijser.org

1292



International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016

ISSN 2229-5518

where P, and @), are the invariant differential operators on G5 and B respec-
tively.

2.2. Denote by S(G5) the Schwartz space of Gy, which is the Schwartz
space S(R®) of R® let S'(G5) be the space of all tempered distributions on Gs.
If we consider the group G5 is as a subgroup of L, then fe S(G5) for zand
T, are fixed, and if we consider B as a subgroup of L, then f € S(B)
for tjand to fixed. This being so; denote by Sg(L) the space of all func-
tions ¢(xs, x4, T3, To, ta, x1,t1) € C°(L) such that ¢(zs, x4, T3, 9, o, x1,t1) €
S(Gs) for xiand xo fixed, and @(x5, T4, T3, T2, ta, 21, t1) € S(B) for t; and ¢,
fixed. We equip Sg(L) with the natural topology defined by the seminomas:

(b_> Sup ’Q(xf)ax4gx3,$2,tg,xl’tl)P<D)¢(l‘5,$4’x3’x2’t2,x1’t1)’
(z5,24,23,82,51)EB
(13)

»— sup |R(x5, T4, T3, Ta, ta, 1,11)S (D) P(x5, T4, T3, T2, ta, 1, t1)]
(w5,@4,23,t2,01)EK

(14)
where P, ), R and S run over the family of all complex polynomials in 5
variables. Let SL(L) be the subspace of all functions F' € Sg(L), which are
invariant in sense (9), then we have the following result.

Theorem 2.2. Let u € U and (), be the invariant differential operator
on the group B, which is associated to u, then we have

(1) The mapping f — f is a topological isomorphism of S(G5) onto
SL(L) .

(ii) The mapping F +— Q.F is a topological isomorphism of SL(L) onto
its image, where Q,, acts on the variables (s, x4, T3, T2, 1) € B.

Proof: (i) In fact ~ is continuous and the restriction mapping F' +— RF
on (5 is continuous from Sf (L) into S(G5) that satisfies Ro ~= Idg(g,) and
~ oR = Idgi ), where Ids(q;) (resp. Idgip)) is the identity mapping of
S(Gs) (resp. SL(L)) and G5 is considered as a subgroup of L. To prove(ii)
we refer to[25, P.313 — 315] and his famous result that is:

"Any invariant differential operator on B, is a topological isomorphism
of S(B) onto its image" From this result, we obtain that

Qu = Sp(L) — Sp(L) (15)

is a topological isomorphism and its restriction on SL(L) is a topological
isomorphism of SL(L) onto its image. Hence the theorem is proved.

6
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In the following we will prove that every invariant differential operator on
G5 = (R*x{0})»,,Rx {0} )», R has a tempered fundamental solution. As
in the introduction, we will consider the two invariant differential operators
P, and Q,, the first on the group G5 = R® x {0} x Rx {0} xR , and the
second on the group B = R? x R x {0} xR x {0}. Our main result is:

Theorem 2.3. FEvery nonzero invariant differential operator P, on Gj
associated to U is a topological isomorphism of SL(L) onto its image.

Proof: In fact by equation (10), for every u € U and F € SL(L)

PuF<:U5a Xy, 23, T2, t27 X1, tl)

= /F [(p(s ) ((p(yz ) (@s — ys, 24 — ya, T3 — Y3), T2, T2 — Y2, T1, 11 — )]

Gs
u(Ys, Ya, Y3, Yo, 8)dysdyadysdysds
= U * F(:c4,353,:1:2,x1,t) = QUF($4,$3,$2,.’L'1,t) (16)

for all (x5, x4, x3, o, ta, x1,t1) € L, where  is the convolution product on
R?® x {0} x Rx {0} xR and *. is the convolution product on the group
B = R* x R x {0} xR x {0}. So the mapping F' — Q,F is a topological
isomorphism of SL(L) onto its image, then the mapping F +— P,F is a
topological isomorphism of SL(L) onto its image. Since

R(PUF)<I’5a$47'T37m2at27x17t1) = PU(RF)($57'T47'I3;‘/L‘27t27'r17t1) (17)

then the following diagram is commutative:

Sp(L) p, P,SE(L)
~Tl R IR
S(Gs) P, P,S(Gs)

Hence the mapping F' — P,F is a topological isomorphism of S(G5)
onto its image.

Corollary 2.1. Every nonzero invariant differential operator on Gshas
a tempered fundamental solution.
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Proof : The transpose ‘P, of P, is a continuous mapping of S’'(G5) onto
S'(G5). This means that for every tempered distribution 7" on G5 there is a
tempered distribution F on G5 such that

PE=T (18)

Indeed the Dirac measure d belongs to S'(G5).

3 Hypoellipticity

3.1. Asin [12], the Lie algebra Ls, can be presented by the following matrix

L;,:(Ml(Xbéi;XSaXO MQ(XI,X2?§3’X47X5))|XZ~ER (19)
where
0 —X; 0 X,
M (X1, Xo, X3, Xy) = 8 8 _5(1 ﬁz | X; eR (20)
0 0 0
and
0 Xy 0 X;
My (X1, Xa, X3, X5) = 8 8 )82 :ii | X; R (21)
00 0 0

Each X; can be represented as the matrix with §;;. A matrix presentation
of the group G, is thus the matrix exponential of Lj

M1<X1 X2 X3 X4) 04><4
G - E ) ) ) XZ [ R
5 P ( 04><4 MQ(X17X27X37X5) |
Ni(z1, T2, 73, 74) 044 (22)
04><4 NQ(I’l,xQ,I3,[L’5)
8
IJSER © 2016

http://www_ijser.org

1295



International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016
ISSN 2229-5518
1296

where
1 —x % Ty
Ny (21, 29, 23, 14) = 8 (1) _fl ;3 | X; eR (23)
0 0 0 12
and
1 % T5 — 22
No(x1, o, 3, 14) = 8 (1) xf _zix_lmj | X; eR (24)
0 0 O 1

3.2. It is easy to show, that is explicitly the basis of the Lie algebra is
given by the following vector fields

0 0 0 20
X1 = a—xl, XQ(]?) = 8_5,32 — Jila—m -+ %8_554 + x1x2_8$5
0 0 0 0 0
Xg(l') = = —T1=— — x2_7X4 7X5 — (25)

Any invariant differential operator on G4 has the form

P= ) apyos(X1)" (X2)" (Xs)" (Xa)7 (X5)" a0 € C (26)

o,B,7,0,0

is solvable.
In particular the Laplacian operator on Gy

Ag, = (X1)* + (X2)” + (X3)" + (X0)* + (X5)° (27)

is solvable on the group G5.Now, we consider on G5 the following vector fields

0 o a2 9
Yi = a—m—($2+$3)8—%—$38—u+$1$28—x4+?28_15
Y, = i—xijtx—%i—%xxi—xi
> 0, o, 20, 10, o,

0 0 0 0
e

9 0

9
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Our main results are

Theorem 3.1. The operator

5
vi=3) v? (29)
1=1

1s solvable and hypoelliptic on G5
Proof: Define the mapping I' : D'(G5) — D'(G5) as follows

1 1
Lo(xs, 14,73, 20, 71) = ¢($5+§$1I§—9€2$3, SU4+§37%SU2—961373, T3—T1T2—T1T3, T2, 1)
(30)
The operator I' is hypoelliptic and has an inverse, which is

1 1
D' (5, 24, T3, 72, 11) = ¢($5—§$1$§+$2,$4—§9€§+$1,1?3‘1‘%17952,%1) (31)

It is easy to show that the operator I' verifies the following equation

5
T (Ouyas + Ongrs + Ongary + Onpay + Oy )T = Y Y7 (32)
=1

where Oy.p. + Orizs + Ovsws + Ovgzy + Ouyey 18 the Laplace operator on R5. So

5
the solvability and hypoellipticity of the operator >_ Y;?
i=1
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