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Abstract

The goal of this paper is to prove the existence theorem for any in-
variant di¤erential operator on the nilpotent Lie group G5: Out of the
Hormander condition, we prove the hypoellipticity for a remarkable
class of di¤erential operators G5.
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1 Introduction and results.

1.1. Let G5 be the real group consisting of all matrices of the form
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0BBBBBBBBBBB@

1 �x1 x21
2

x4 0 0 0 0
0 1 �x1 x3 0 0 0 0
0 0 1 x2 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 1 x2
x22
2

x5 � x 1x22
2

0 0 0 0 0 1 x2 �x3 � x1x2
0 0 0 0 0 0 1 �x1
0 0 0 0 0 0 0 1

1CCCCCCCCCCCA
(1)

where x1 2 R; x2 2 R; x3 2 R, x4 2 R and x5 2 R. Let K = R5 be the group
with the following law

(x5; x4; x3; x2; x1)(y5; y4; y3; y2; y1)

= (x5 + y5 +
1

2
x1y

2
2 � x2y3 + x1x2y2; x4 + y4 +

1

2
x21y2 � x1y3; y3 + x3 � x1y2; x2 + y2; x1 + y1)

for any (x5; x4; x3; x2; x1) 2 R5 and (y5; y4; y3; y2; y1) 2 R5: The inverse of an
element (x5; x4; x3; x2; x1) is

(x5; x4; x3; x2; x1)
�1 (2)

= (�x5 �
x1
2
x22 � x2x3;�x4 �

x21
2
x2 � x1x3;�x3 � x1x2;�x2;�x1)

Dixmier had proved in [8; P:331] that there is a group isomorphism between
G5 and K: Thanks to this isomorphism, the group K can be shown as a
semidirect product R3o

�2

R o
�1

R of the real vector groups R, R, and R3, where

�2 is the group homomorphism �2 : R! Aut(R3); which is de�ned by

�2(x2 )(y5; y4; y3) = (y5 � x2y3; y4; y3) (3)

and �1 is the group homomorphism �1 : R! Aut(R3o
�2

R); which is given by

�1(x1 )(y5; y4; y3; y2) = (y5 +
x1
2
y22; y4 +

x21
2
y2 � x1y3; y3 � x1y2; y2) (4)

where Aut(R3) (resp:Aut(R3o
�2

R)) is the group of all automorphisms of (R3)

(resp:(R3 o
�2

R)):
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1.2. Let C1(K); D(K); D0(K); E 0(K) be the space of C1- functions, C1
with compact support, distributions and distributions with compact support
on G5 respectively: If M is an unimodular Lie group, we denote by L1(M)
the Banach algebra that consists of all complex valued functions on the group
M , which are integrable with respect to the Haar measure ofM and multipli-
cation is de�ned by convolution onM , and we denote by L2(M) the Hilbert
space of M . Let U be the complexi�ed universal enveloping algebra of the
real Lie algebra g of K; which is canonically isomorphic to the algebra of all
distributions on K supported by f0g ; where 0 is the identity element of K.
For any u 2 U one can de�ne a di¤erential operator Pu on K as follows:

Puf(X) = u � f(X) =
Z
K

f(Y �1X)u(Y )dY (5)

for any f 2 C1(K); where dY = dy5dy4dy3dy2dy1 is the Haar measure
on K which is the Lebesgue measure on R5, Y = (y5; y4; y3; y2; y1), X =
(x5; x4; x3; x2; x1) and � denotes the convolution product on K:The mapping
u ! Pu is an algebra isomorphism of U onto the algebra of all invariant
di¤erential operators on K.
1.3. Let B = R3�R�R be the group of the direct product of R3;R and

R. We denote also by U the complexi�ed enveloping algebra of the real Lie
algebra b of B: For every u 2 U , we can associate a di¤erential operator Qu
on B as follows

Quf(X) = u �c f(X) = f �c u(X)

=

Z
B

f(X � Y )u(Y )dY (6)

for any f 2 C1(B); X 2 B; Y 2 B: where �c signify the convolution prod-
uct on the real vector group B and dY = dy5dy4dy3dy2dy1 is the Lebesgue
measure on B: The mapping u 7! Qu is an algebra isomorphism of U onto
the algebra of all invariant di¤erential operators on B; which are nothing but
the algebra of di¤erential operator with constant coe¢ cients on B: For more
details see[8; 18]
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2 Existence Theorem.

2.1. Let L = R3 � R� R� R� R be the group with law:

X:Y

= (x5; x4; x3; x2; t2; x1; t1)(y5; y4; y3; y2; s2; y1; s1)

= (((x5; x4; x3; x2; t2; x1)(�1(t1)(y5; y4; y3; s2)); y1 + x1; t1 + s1)

= ((x5; x4; x3) + (�2(t2)(y5 +
t1
2
s22; y4 +

t21
2
s2 � t1y3; y3 � t1s2));

x2 + y2; t2 + s2; y1 + x1; t1 + s1)

= (x5 + y5 +
t1
2
s22 � t2y3 + t1t2s2; x4 + y4 +

t21
2
s2 � t1y3; x3 + y3 � t1s2;

x2 + y2; t2 + s2; y1 + x1; t1 + s1) (7)

for all X = (x5; x4; x3; x2; t2; x1; t1) 2 L and Y = (y5; y4; y3; y2; y1; s2; s1) 2
L: In this case the group G5 can be identi�ed with the closed subgroup
R3�f0g�R� f0g �R of L and B with the subgroup R3�R�f0g�R�f0g
of L:

De�nition 2.1. For every f 2 C1(G5), one can de�ne function ef 2
C1(L) as follows:

ef(x5; x4; x3; x2; t2; x1; t1) (8)

= f((�1(x1)(�2(x2)(x5; x4; x3))); x2 + t2); x1 + t1)

for all (x5; x4; x3; x2; t2; x1; t1) 2 L:
Remark 2.1. The function ef is invariant in the following sense:

ef((�1(h)((�2(k)(x5; x4; x3)); x2 � k; t2 + k)); x1 � h; t1 + h)

= ef(x5; x4; x3; x2; t2; x1; t1) (9)

for any (x5; x4; x3; x2; t2; x1; t1) 2 L, h 2 R and k 2 R. So every func-
tion  (x5; x4; x3; x2; x1) on G5 extends uniquely as an invariant functione (x5; x4; x3; x2; t2; x1; t1) on L
Theorem 2.1. For every function F 2 C1(L) invariant in sense (9) and

for every u2U , we have

u � F (x5; x4; x3; x2; t2; x1; t1) = u �c F (x5; x4; x3; x2; t2; x1; t1) (10)

4
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for every (x5; x4; x3; x2; t2; x1; t1) 2 L, where � signi�es the convolution prod-
uct on G5 with respect the variables (x5; x4; x3; t2; t1) and �csigni�es the com-
mutative convolution product on B with respect the variables (x5; x4; x3; x2; x1):

Proof: In fact we have

PuF (x5; x4; x3; x2; t2; x1; t1)

= u � F (x5; x4; x3; x2; t2; x1; t1)

=

Z
G5

F
�
(y5; y4; y3; y2; s)

�1(x5; x4; x3; x2; t2; x1; t1)
�

u(y5; y4; y3; y2; s)dy5dy4dy3dy2ds

=

Z
G5

F
�
(�1(s

�1)(y5; y4; y3; y2)
�1;�s)(x5; x4; x3; x2; t2; x1; t1)

�
u(y4; y3; y2; s)dy5dy4dy3dy2ds

=

Z
G5

F
�
(�1(s

�1)((�2(y
�1
2 )(�y5;�y4;�y3)(x5; x4; x3; x2)); t2 � y2; x1; t1 � s)

�
u(y5; y4; y3; y2; s)dy5dy4dy3dy2ds

=

Z
G5

F
�
(�1(s

�1)((�(y�12 )(x5 � y5; x4 � y4; x3 � y3); x2; t2 � y2; x1; t1 � s)
�

u(y5; y4; y3; y2; s)dy5dy4dy3dy2ds

= u �c F (x5; x4; x3; x2; t2; x1; t1) = QuF (x5; x4; x3; x2; t2; x1; t1) (11)

By the invariance of F; we get:

PuF (x5; x4; x3; x2; t2; x1; t1)

= u � F (x5; x4; x3; x2; t2; x1; t1)

=

Z
G4

F
�
(�(s�1)((�(y�12 )(x5 � y5; x4 � y4; x3 � y3); x2; t2 � y2; x1; t1 � s)

�
u(y5; y4; y3; y2; s)dy5dy4dy3dy2ds

=

Z
G4

F [x5 � y5; x4 � y4; x3 � y3; x2 � y2; t2; x1 � s; t1)]

u(y5; y4; y3; y2; s)dy5dy4dy3dy2ds

= u �c F (x5; x4; x3; x2; t2; x1; t1) = QuF (x5; x4; x3; x2; t2; x1; t1) (12)

5
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where Pu and Qu are the invariant di¤erential operators on G5 and B respec-
tively.
2.2. Denote by S(G5) the Schwartz space of G5, which is the Schwartz

space S(R5) of R5 let S 0(G5) be the space of all tempered distributions on G5:
If we consider the group G5 is as a subgroup of L, then ef 2 S(G5) for x1and
x2 are �xed, and if we consider B as a subgroup of L; then ef 2 S(B)
for t1and t2 �xed. This being so; denote by SE(L) the space of all func-
tions �(x5; x4; x3; x2; t2; x1; t1) 2 C1(L) such that �(x5; x4; x3; x2; t2; x1; t1) 2
S(G5) for x1and x2 �xed, and �(x5; x4; x3; x2; t2; x1; t1) 2 S(B) for t1 and t2
�xed. We equip SE(L) with the natural topology de�ned by the seminomas:

�! sup
(x5;x4;x3;x2;x1)2B

jQ(x5; x4; x3; x2; t2; x1; t1)P (D)�(x5; x4; x3; x2; t2; x1; t1)j t 2; t1 fixed

(13)
�! sup

(x5;x4;x3;t2;t1)2K
jR(x5; x4; x3; x2; t2; x1; t1)S(D)�(x5; x4; x3; x2; t2; x1; t1)j x2; x1 fixed

(14)
where P; Q; R and S run over the family of all complex polynomials in 5
variables. Let SIE(L) be the subspace of all functions F 2 SE(L); which are
invariant in sense (9), then we have the following result.

Theorem 2.2. Let u 2 U and Qu be the invariant di¤erential operator
on the group B; which is associated to u; then we have
(i) The mapping f 7! ef is a topological isomorphism of S(G5) onto

SIE(L) .
(ii) The mapping F 7! QuF is a topological isomorphism of SIE(L) onto

its image, where Qu acts on the variables (x5; x4; x3; x2; x1) 2 B:

Proof : (i) In fact � is continuous and the restriction mapping F 7! RF
on G5 is continuous from SIE(L) into S(G5) that satis�es R� �= IdS(G5) and
� �R = IdSIE(L); where IdS(G5) (resp. IdSIE(L)) is the identity mapping of
S(G5) (resp. SIE(L)) and G5 is considered as a subgroup of L: To prove(ii)
we refer to[25; P:313� 315] and his famous result that is:
"Any invariant di¤erential operator on B; is a topological isomorphism

of S(B) onto its image" From this result, we obtain that

Qu : SE(L)! SE(L) (15)

is a topological isomorphism and its restriction on SIE(L) is a topological
isomorphism of SIE(L) onto its image. Hence the theorem is proved.

6
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In the following we will prove that every invariant di¤erential operator on
G5 = ((R3�f0g)o�2R� f0g )o�1R has a tempered fundamental solution. As
in the introduction, we will consider the two invariant di¤erential operators
Pu and Qu, the �rst on the group G5 = R3 � f0g � R� f0g �R ; and the
second on the group B = R3 � R� f0g�R� f0g: Our main result is:
Theorem 2.3. Every nonzero invariant di¤erential operator Pu on G5

associated to U is a topological isomorphism of SIE(L) onto its image.

Proof : In fact by equation (10); for every u 2 U and F 2 SIE(L)

PuF (x5; x4; x3; x2; t2; x1; t1)

=

Z
G5

F
�
(�(s�1)((�(y�12 )(x5 � y5; x4 � y4; x3 � y3); x2; t2 � y2; x1; t1 � s)

�
u(y5; y4; y3; y2; s)dy5dy4dy3dy2ds

= u �c F (x4; x3; x2; x1; t) = QuF (x4; x3; x2; x1; t) (16)

for all (x5; x4; x3; x2; t2; x1; t1) 2 L; where ? is the convolution product on
R3 � f0g � R� f0g �R and �c is the convolution product on the group
B = R3 � R � f0g�R � f0g: So the mapping F 7! QuF is a topological
isomorphism of SIE(L) onto its image, then the mapping F 7! PuF is a
topological isomorphism of SIE(L) onto its image. Since

R(PuF )(x5; x4; x3; x2; t2; x1; t1) = Pu(RF )(x5; x4; x3; x2; t2; x1; t1) (17)

then the following diagram is commutative:

SIE(L) Pu
�!

PuSIE(L)

�"# R # R

S(G5) Pu
�!

PuS(G5)

Hence the mapping F 7! PuF is a topological isomorphism of S(G5)
onto its image.

Corollary 2.1. Every nonzero invariant di¤erential operator on G5has
a tempered fundamental solution.

7
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Proof : The transpose tPu of Pu is a continuous mapping of S 0(G5) onto
S 0(G5): This means that for every tempered distribution T on G5 there is a
tempered distribution E on G5 such that

PuE = T (18)

Indeed the Dirac measure � belongs to S 0(G5):

3 Hypoellipticity

3.1. As in [12], the Lie algebra L5, can be presented by the following matrix

L5 =

�
M1(X1; X2; X3; X4) 04�4

04�4 M2(X1; X2; X3; X4; X5)

�
j Xi 2 R (19)

where

M1(X1; X2; X3; X4) =

0BB@
2664
0BB@
0 �X1 0 X4

0 0 �X1 X3

0 0 0 X2

0 0 0 0

1CCA j Xi 2 R

3775
1CCA (20)

and

M2(X1; X2; X3; X5) =

0BB@
2664
0BB@
0 X2 0 X5

0 0 X2 �X3

0 0 0 �X1

0 0 0 0

1CCA j Xi 2 R

3775
1CCA (21)

EachXi can be represented as the matrix with �ij. A matrix presentation
of the group G4 is thus the matrix exponential of L5

G5 = Exp

�
M1(X1; X2; X3; X4) 04�4

04�4 M2(X1; X2; X3; X5)

�
j Xi 2 R

=

�
N1(x1; x2; x3; x4) 04�4

04�4 N2(x1; x2; x3; x5)

�
(22)

8
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where

N1(x1; x2; x3; x4) =

0BB@
2664
0BB@
1 �x1 x21

2
x4

0 1 �x1 x3
0 0 1 x2
0 0 0 1

1CCA j Xi 2 R

3775
1CCA (23)

and

N2(x1; x2; x3; x4) =

0BB@
2664
0BB@
1 x2

x22
2

x5 � x1x22
2

0 1 x2 �x3 � xx
0 0 1 �x1
0 0 0 1

1CCA j Xi 2 R

3775
1CCA (24)

3.2. It is easy to show, that is explicitly the basis of the Lie algebra is
given by the following vector �elds

X1 =
@

@x1
; X2(x) =

@

@x2
� x1

@

@x3
+
x21
2

@

@x4
+ x1x2

@

@x5

X3(x) =
@

@x3
� x1

@

@x4
� x2

@

@x5
; X4 =

@

@x4
; X5 =

@

@x5
(25)

Any invariant di¤erential operator on G4 has the form

P =
X

�;�;;�;�

a�;�;;�;� (X1)
� (X2)

� (X3)
 (X4)

� (X5)
� ; a�;�;;�;� 2 C (26)

is solvable.
In particular the Laplacian operator on G5

�G5 = (X1)
2 + (X2)

2 + (X3)
2 + (X4)

2 + (X5)
3 (27)

is solvable on the group G5:Now, we consider on G5 the following vector �elds

Y1 =
@

@x1
� (x2 + x3)

@

@x3
� x3

@

@x4
+ x1x2

@

@x4
+
x22
2

@

@x5

Y2 =
@

@x2
� x1

@

@x3
+
x21
2

@

@x4
+ x1x2

@

@x5
� x3

@

@x5

Y3 =
@

@x3
� x1

@

@x4
� x1

@

@x3
� x2

@

@x5

Y4 =
@

@x4
; X5 =

@

@x5
(28)

9
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Our main results are

Theorem 3.1. The operator

Y 2 =

5X
i=1

Y 2
i (29)

is solvable and hypoelliptic on G5
Proof: De�ne the mapping � : D0(G5)! D0(G5) as follows

��(x5; x4; x3; x2; x1) = �(x5+
1

2
x1x

2
2�x2x3; x4+

1

2
x21x2�x1x3; x3�x1x2�x1x3; x2; x1)

(30)
The operator � is hypoelliptic and has an inverse, which is

��1�(x5; x4; x3; x2; x1) = �(x5�
1

2
x1x

2
2+x2; x4�

1

2
x21+x1; x3+x1; x2; x1) (31)

It is easy to show that the operator � veri�es the following equation

��1(@x5x5 + @x4x4 + @x3x3 + @x2x2 + @x1x1)� =
5X
i=1

Y 2
i (32)

where @x5x5 + @x4x4 + @x3x3 + @x2x2 + @x1x1 is the Laplace operator on R5: So

the solvability and hypoellipticity of the operator
5P
i=1

Y 2
i
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