Existence and Hypoellipticity for Partial Differential Operators on the Nilpotent Cartan-Lie Group G_{5}

Kahar El-Hussein
Department of Mathematics, Faculty of Science and Al Qurayat, Al Jouf University, KSA
E-mail: kumath@ju.edu.sa, kumath@hotmail.com
Badahi Ould Mohamed
Department of Mathematics, Faculty of Science and Al Qurayat, Al Jouf University, KSA
badahi1977@yahoo.fr
December 10, 2015

Abstract

The goal of this paper is to prove the existence theorem for any invariant differential operator on the nilpotent Lie group G_{5}. Out of the Hormander condition, we prove the hypoellipticity for a remarkable class of differential operators G_{5}.

Keywords: Group G_{5}, Semi-Direct Product, Existence Theorem, Hypoellipticity of Partial Differential Equations.

AMS 2000 Subject Classification: $43 A 30 \& 35 D 05$

1 Introduction and results.

1.1. Let G_{5} be the real group consisting of all matrices of the form

$$
\left(\begin{array}{cccccccc}
1 & -x_{1} & \frac{x_{1}^{2}}{2} & x_{4} & 0 & 0 & 0 & 0 \tag{1}\\
0 & 1 & -x_{1} & x_{3} & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & x_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & x_{2} & \frac{x_{2}^{2}}{2} & x_{5}-\frac{x_{1} x_{2}^{2}}{2} \\
0 & 0 & 0 & 0 & 0 & 1 & x_{2} & -x_{3}-x_{1} x_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -x_{1} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

where $x_{1} \in \mathbb{R}, x_{2} \in \mathbb{R}, x_{3} \in \mathbb{R}, x_{4} \in \mathbb{R}$ and $x_{5} \in \mathbb{R}$. Let $K=\mathbb{R}^{5}$ be the group with the following law

$$
\begin{aligned}
& \left(x_{5}, x_{4}, x_{3}, x_{2}, x_{1}\right)\left(y_{5}, y_{4}, y_{3}, y_{2}, y_{1}\right) \\
= & \left(x_{5}+y_{5}+\frac{1}{2} x_{1} y_{2}^{2}-x_{2} y_{3}+x_{1} x_{2} y_{2}, x_{4}+y_{4}+\frac{1}{2} x_{1}^{2} y_{2}-x_{1} y_{3}, y_{3}+x_{3}-x_{1} y_{2}, x_{2}+y_{2}, x_{1}+y_{1}\right)
\end{aligned}
$$

for any $\left(x_{5}, x_{4}, x_{3}, x_{2}, x_{1}\right) \in \mathbb{R}^{5}$ and $\left(y_{5}, y_{4}, y_{3}, y_{2}, y_{1}\right) \in \mathbb{R}^{5}$. The inverse of an element $\left(x_{5}, x_{4}, x_{3}, x_{2}, x_{1}\right)$ is

$$
\begin{align*}
& \left(x_{5}, x_{4}, x_{3}, x_{2}, x_{1}\right)^{-1} \tag{2}\\
= & \left(-x_{5}-\frac{x_{1}}{2} x_{2}^{2}-x_{2} x_{3},-x_{4}-\frac{x_{1}^{2}}{2} x_{2}-x_{1} x_{3},-x_{3}-x_{1} x_{2},-x_{2},-x_{1}\right)
\end{align*}
$$

Dixmier had proved in [8, P.331] that there is a group isomorphism between G_{5} and K. Thanks to this isomorphism, the group K can be shown as a semidirect product $\mathbb{R}^{3} \rtimes \mathbb{R} \rtimes \mathbb{R}$ of the real vector groups \mathbb{R}, \mathbb{R}, and \mathbb{R}^{3}, where ρ_{2} is the group homomorphism $\rho_{2}: \mathbb{R} \rightarrow \operatorname{Aut}\left(\mathbb{R}^{3}\right)$, which is defined by

$$
\begin{equation*}
\rho_{2}\left(x_{2}\right)\left(y_{5}, y_{4}, y_{3}\right)=\left(y_{5}-x_{2} y_{3}, y_{4}, y_{3}\right) \tag{3}
\end{equation*}
$$

and ρ_{1} is the group homomorphism $\rho_{1}: \mathbb{R} \rightarrow \operatorname{Aut}\left(\mathbb{R}^{3} \underset{\rho_{2}}{\rtimes}\right)$, which is given by

$$
\begin{equation*}
\rho_{1}\left(x_{1}\right)\left(y_{5}, y_{4}, y_{3}, y_{2}\right)=\left(y_{5}+\frac{x_{1}}{2} y_{2}^{2}, y_{4}+\frac{x_{1}^{2}}{2} y_{2}-x_{1} y_{3}, y_{3}-x_{1} y_{2}, y_{2}\right) \tag{4}
\end{equation*}
$$

where $\operatorname{Aut}\left(\mathbb{R}^{3}\right)\left(\operatorname{resp} . A u t\left(\mathbb{R}^{3} \rtimes \mathbb{R}\right)\right)$ is the group of all automorphisms of $\left(\mathbb{R}^{3}\right)$ $\left(\operatorname{resp} .\left(\mathbb{R}^{3} \underset{\rho_{2}}{\rtimes} \mathbb{R}\right)\right)$.
1.2. Let $C^{\infty}(K), \mathcal{D}(K), \mathcal{D}^{\prime}(K), \mathcal{E}^{\prime}(K)$ be the space of C^{∞} - functions, C^{∞} with compact support, distributions and distributions with compact support on G_{5} respectively. If M is an unimodular Lie group, we denote by $L^{1}(M)$ the Banach algebra that consists of all complex valued functions on the group M, which are integrable with respect to the Haar measure of M and multiplication is defined by convolution on M, and we denote by $L^{2}(M)$ the Hilbert space of M. Let \mathcal{U} be the complexified universal enveloping algebra of the real Lie algebra \underline{g} of K; which is canonically isomorphic to the algebra of all distributions on \bar{K} supported by $\{0\}$, where 0 is the identity element of K. For any $u \in \mathcal{U}$ one can define a differential operator P_{u} on K as follows:

$$
\begin{equation*}
P_{u} f(X)=u * f(X)=\int_{K} f\left(Y^{-1} X\right) u(Y) d Y \tag{5}
\end{equation*}
$$

for any $f \in C^{\infty}(K)$, where $d Y=d y_{5} d y_{4} d y_{3} d y_{2} d y_{1}$ is the Haar measure on K which is the Lebesgue measure on $\mathbb{R}^{5}, Y=\left(y_{5}, y_{4}, y_{3}, y_{2}, y_{1}\right), X=$ $\left(x_{5}, x_{4}, x_{3}, x_{2}, x_{1}\right)$ and $*$ denotes the convolution product on K. The mapping $u \rightarrow P_{u}$ is an algebra isomorphism of \mathcal{U} onto the algebra of all invariant differential operators on K.
1.3. Let $B=\mathbb{R}^{3} \times \mathbb{R} \times \mathbb{R}$ be the group of the direct product of $\mathbb{R}^{3}, \mathbb{R}$ and \mathbb{R}. We denote also by \mathcal{U} the complexified enveloping algebra of the real Lie algebra \underline{b} of B. For every $u \in \mathcal{U}$, we can associate a differential operator Q_{u} on B as follows

$$
\begin{align*}
Q_{u} f(X) & =u *_{c} f(X)=f *_{c} u(X) \\
& =\int_{B} f(X-Y) u(Y) d Y \tag{6}
\end{align*}
$$

for any $f \in C^{\infty}(B), X \in B, Y \in B$. where $*_{c}$ signify the convolution product on the real vector group B and $d Y=d y_{5} d y_{4} d y_{3} d y_{2} d y_{1}$ is the Lebesgue measure on B. The mapping $u \mapsto Q_{u}$ is an algebra isomorphism of \mathcal{U} onto the algebra of all invariant differential operators on B, which are nothing but the algebra of differential operator with constant coefficients on B. For more details see[8, 18]

2 Existence Theorem.

2.1. Let $L=\mathbb{R}^{3} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ be the group with law:

$$
\begin{align*}
& X . Y \\
= & \left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right)\left(y_{5}, y_{4}, y_{3}, y_{2}, s_{2}, y_{1}, s_{1}\right) \\
= & \left(\left(\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}\right)\left(\rho_{1}\left(t_{1}\right)\left(y_{5}, y_{4}, y_{3}, s_{2}\right)\right), y_{1}+x_{1}, t_{1}+s_{1}\right)\right. \\
= & \left(\left(x_{5}, x_{4}, x_{3}\right)+\left(\rho_{2}\left(t_{2}\right)\left(y_{5}+\frac{t_{1}}{2} s_{2}^{2}, y_{4}+\frac{t_{1}^{2}}{2} s_{2}-t_{1} y_{3}, y_{3}-t_{1} s_{2}\right)\right),\right. \\
& \left.x_{2}+y_{2}, t_{2}+s_{2}, y_{1}+x_{1}, t_{1}+s_{1}\right) \\
= & \left(x_{5}+y_{5}+\frac{t_{1}}{2} s_{2}^{2}-t_{2} y_{3}+t_{1} t_{2} s_{2}, x_{4}+y_{4}+\frac{t_{1}^{2}}{2} s_{2}-t_{1} y_{3}, x_{3}+y_{3}-t_{1} s_{2},\right. \\
& \left.x_{2}+y_{2}, t_{2}+s_{2}, y_{1}+x_{1}, t_{1}+s_{1}\right) \tag{7}
\end{align*}
$$

for all $X=\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \in L$ and $Y=\left(y_{5}, y_{4}, y_{3}, y_{2}, y_{1}, s_{2}, s_{1}\right) \in$ L. In this case the group G_{5} can be identified with the closed subgroup $\mathbb{R}^{3} \times\{0\} \times \mathbb{R} \times\{0\} \times \mathbb{R}$ of L and B with the subgroup $\mathbb{R}^{3} \times \mathbb{R} \times\{0\} \times \mathbb{R} \times\{0\}$ of L.

Definition 2.1. For every $f \in C^{\infty}\left(G_{5}\right)$, one can define function $\widetilde{f} \in$ $C^{\infty}(L)$ as follows:

$$
\begin{align*}
& \tilde{f}\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \tag{8}\\
= & \left.f\left(\left(\rho_{1}\left(x_{1}\right)\left(\rho_{2}\left(x_{2}\right)\left(x_{5}, x_{4}, x_{3}\right)\right)\right), x_{2}+t_{2}\right), x_{1}+t_{1}\right)
\end{align*}
$$

for all $\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \in L$.
Remark 2.1. The function \tilde{f} is invariant in the following sense:

$$
\begin{align*}
& \widetilde{f}\left(\left(\rho_{1}(h)\left(\left(\rho_{2}(k)\left(x_{5}, x_{4}, x_{3}\right)\right), x_{2}-k, t_{2}+k\right)\right), x_{1}-h, t_{1}+h\right) \\
= & \widetilde{f}\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \tag{9}
\end{align*}
$$

for any $\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \in L, h \in \mathbb{R}$ and $k \in \mathbb{R}$. So every function $\psi\left(x_{5}, x_{4}, x_{3}, x_{2}, x_{1}\right)$ on G_{5} extends uniquely as an invariant function $\widetilde{\psi}\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right)$ on L

Theorem 2.1. For every function $F \in C^{\infty}(L)$ invariant in sense (9) and for every $u \in \mathcal{U}$, we have

$$
\begin{equation*}
u * F\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right)=u *_{c} F\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \tag{10}
\end{equation*}
$$

for every $\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \in L$, where $*$ signifies the convolution product on G_{5} with respect the variables $\left(x_{5}, x_{4}, x_{3}, t_{2}, t_{1}\right)$ and $*_{c}$ signifies the commutative convolution product on B with respect the variables $\left(x_{5}, x_{4}, x_{3}, x_{2}, x_{1}\right)$.

Proof: In fact we have

$$
\begin{align*}
& P_{u} F\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \\
= & u * F\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \\
= & \int_{G_{5}} F\left[\left(y_{5}, y_{4}, y_{3}, y_{2}, s\right)^{-1}\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right)\right] \\
& u\left(y_{5}, y_{4}, y_{3}, y_{2}, s\right) d y_{5} d y_{4} d y_{3} d y_{2} d s \\
= & \int_{G_{5}} F\left[\left(\rho_{1}\left(s^{-1}\right)\left(y_{5}, y_{4}, y_{3}, y_{2}\right)^{-1},-s\right)\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right)\right] \\
= & \int_{G_{5}}^{u\left(y_{4}, y_{3}, y_{2}, s\right) d y_{5} d y_{4} d y_{3} d y_{2} d s} F\left[\left(\rho_{1}\left(s^{-1}\right)\left(\left(\rho_{2}\left(y_{2}^{-1}\right)\left(-y_{5},-y_{4},-y_{3}\right)\left(x_{5}, x_{4}, x_{3}, x_{2}\right)\right), t_{2}-y_{2}, x_{1}, t_{1}-s\right)\right]\right. \\
= & \int_{G_{5}} F\left[y_{5}, y_{4}, y_{3}, y_{2}, s\right) d y_{5} d y_{4} d y_{3} d y_{2} d s \\
= & u\left(\rho_{1}\left(s^{-1}\right)\left(\left(\rho\left(y_{2}^{-1}\right)\left(x_{5}-y_{5}, x_{4}-y_{4}, x_{3}-y_{3}\right), x_{2}, t_{2}-y_{2}, x_{1}, t_{1}-s\right)\right]\right. \\
& u\left(y_{5}, y_{3}, y_{2}, s\right) d y_{5} d y_{4} d y_{3} d y_{2} d s \\
= & \left.x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right)=Q_{u} F\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right)
\end{align*}
$$

By the invariance of F, we get:

$$
\begin{align*}
& P_{u} F\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \\
= & u * F\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \\
= & \int_{G_{4}} F\left[\left(\rho\left(s^{-1}\right)\left(\left(\rho\left(y_{2}^{-1}\right)\left(x_{5}-y_{5}, x_{4}-y_{4}, x_{3}-y_{3}\right), x_{2}, t_{2}-y_{2}, x_{1}, t_{1}-s\right)\right]\right.\right. \\
& u\left(y_{5}, y_{4}, y_{3}, y_{2}, s\right) d y_{5} d y_{4} d y_{3} d y_{2} d s \\
= & \left.\int_{G_{4}} F\left[x_{5}-y_{5}, x_{4}-y_{4}, x_{3}-y_{3}, x_{2}-y_{2}, t_{2}, x_{1}-s, t_{1}\right)\right] \\
= & u *_{c} F\left(y_{5}, y_{4}, y_{3}, y_{2}, s\right) d y_{5} d y_{4} d y_{3} d y_{2} d s \\
& \left.u, x_{2}, t_{2}, x_{1}, t_{1}\right)=Q_{u} F\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \tag{12}
\end{align*}
$$

where P_{u} and Q_{u} are the invariant differential operators on G_{5} and B respectively.
2.2. Denote by $\mathcal{S}\left(G_{5}\right)$ the Schwartz space of G_{5}, which is the Schwartz space $\mathcal{S}\left(\mathbb{R}^{5}\right)$ of \mathbb{R}^{5} let $\mathcal{S}^{\prime}\left(G_{5}\right)$ be the space of all tempered distributions on G_{5}. If we consider the group G_{5} is as a subgroup of L, then $\widetilde{f} \in \mathcal{S}\left(G_{5}\right)$ for x_{1} and x_{2} are fixed, and if we consider B as a subgroup of L, then $\widetilde{f} \in \mathcal{S}(B)$ for t_{1} and t_{2} fixed. This being so; denote by $\mathcal{S}_{E}(L)$ the space of all functions $\phi\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \in C^{\infty}(L)$ such that $\phi\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \in$ $\mathcal{S}\left(G_{5}\right)$ for x_{1} and x_{2} fixed, and $\phi\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \in \mathcal{S}(B)$ for t_{1} and t_{2} fixed. We equip $\mathcal{S}_{E}(L)$ with the natural topology defined by the seminomas:

$$
\begin{align*}
& \phi \rightarrow \sup _{\left(x_{5}, x_{4}, x_{3}, x_{2}, x_{1}\right) \in B}\left|Q\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) P(D) \phi\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right)\right| \\
& \phi \rightarrow t_{2}, t_{1} \text { fixed } \tag{13}\\
& \phi \sup _{\left(x_{5}, x_{4}, x_{3}, t_{2}, t_{1}\right) \in K}\left|R\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) S(D) \phi\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right)\right| \\
& x_{2}, x_{1} \text { fixed }
\end{align*}
$$

where P, Q, R and S run over the family of all complex polynomials in 5 variables. Let $\mathcal{S}_{E}^{I}(L)$ be the subspace of all functions $F \in \mathcal{S}_{E}(L)$, which are invariant in sense (9), then we have the following result.

Theorem 2.2. Let $u \in \mathcal{U}$ and Q_{u} be the invariant differential operator on the group B, which is associated to u, then we have
(i) The mapping $f \mapsto \widetilde{f}$ is a topological isomorphism of $\mathcal{S}\left(G_{5}\right)$ onto $\mathcal{S}_{E}^{I}(L)$.
(ii) The mapping $F \mapsto Q_{u} F$ is a topological isomorphism of $\mathcal{S}_{E}^{I}(L)$ onto its image, where Q_{u} acts on the variables $\left(x_{5}, x_{4}, x_{3}, x_{2}, x_{1}\right) \in B$.

Proof: (i) In fact \sim is continuous and the restriction mapping $F \mapsto R F$ on G_{5} is continuous from $\mathcal{S}_{E}^{I}(L)$ into $\mathcal{S}\left(G_{5}\right)$ that satisfies $R \circ \sim=I d_{\mathcal{S}\left(G_{5}\right)}$ and $\sim \circ R=I d_{\mathcal{S}_{E}^{I}(L)}$, where $I d_{\mathcal{S}\left(G_{5}\right)}\left(\right.$ resp. $\left.I d_{\mathcal{S}_{E}^{I}(L)}\right)$ is the identity mapping of $\mathcal{S}\left(G_{5}\right)$ (resp. $\left.\mathcal{S}_{E}^{I}(L)\right)$ and G_{5} is considered as a subgroup of L. To prove $(i i)$ we refer to $[25, P .313-315]$ and his famous result that is:
"Any invariant differential operator on B, is a topological isomorphism of $S(B)$ onto its image" From this result, we obtain that

$$
\begin{equation*}
Q_{u}: \mathcal{S}_{E}(L) \rightarrow \mathcal{S}_{E}(L) \tag{15}
\end{equation*}
$$

is a topological isomorphism and its restriction on $\mathcal{S}_{E}^{I}(L)$ is a topological isomorphism of $\mathcal{S}_{E}^{I}(L)$ onto its image. Hence the theorem is proved.

In the following we will prove that every invariant differential operator on $G_{5}=\left(\left(\mathbb{R}^{3} \times\{0\}\right) \rtimes_{\rho_{2}} \mathbb{R} \times\{0\}\right) \rtimes_{\rho_{1}} \mathbb{R}$ has a tempered fundamental solution. As in the introduction, we will consider the two invariant differential operators P_{u} and Q_{u}, the first on the group $G_{5}=\mathbb{R}^{3} \times\{0\} \times \mathbb{R} \times\{0\} \times \mathbb{R}$, and the second on the group $B=\mathbb{R}^{3} \times \mathbb{R} \times\{0\} \times \mathbb{R} \times\{0\}$. Our main result is:

Theorem 2.3. Every nonzero invariant differential operator P_{u} on G_{5} associated to \mathcal{U} is a topological isomorphism of $\mathcal{S}_{E}^{I}(L)$ onto its image.

Proof: In fact by equation (10), for every $u \in \mathcal{U}$ and $F \in \mathcal{S}_{E}^{I}(L)$

$$
\begin{align*}
& P_{u} F\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \\
= & \int_{G_{5}} F\left[\left(\rho\left(s^{-1}\right)\left(\left(\rho\left(y_{2}^{-1}\right)\left(x_{5}-y_{5}, x_{4}-y_{4}, x_{3}-y_{3}\right), x_{2}, t_{2}-y_{2}, x_{1}, t_{1}-s\right)\right]\right.\right. \\
= & u\left(y_{5}, y_{4}, y_{3}, y_{2}, s\right) d y_{5} d y_{4} d y_{3} d y_{2} d s \\
= & u *_{c} F\left(x_{4}, x_{3}, x_{2}, x_{1}, t\right)=Q_{u} F\left(x_{4}, x_{3}, x_{2}, x_{1}, t\right) \tag{16}
\end{align*}
$$

for all $\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \in L$, where \star is the convolution product on $\mathbb{R}^{3} \times\{0\} \times \mathbb{R} \times\{0\} \times \mathbb{R}$ and $*_{c}$ is the convolution product on the group $B=\mathbb{R}^{3} \times \mathbb{R} \times\{0\} \times \mathbb{R} \times\{0\}$. So the mapping $F \mapsto Q_{u} F$ is a topological isomorphism of $\mathcal{S}_{E}^{I}(L)$ onto its image, then the mapping $F \mapsto P_{u} F$ is a topological isomorphism of $\mathcal{S}_{E}^{I}(L)$ onto its image. Since

$$
\begin{equation*}
R\left(P_{u} F\right)\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right)=P_{u}(R F)\left(x_{5}, x_{4}, x_{3}, x_{2}, t_{2}, x_{1}, t_{1}\right) \tag{17}
\end{equation*}
$$

then the following diagram is commutative:

$\mathcal{S}_{E}^{I}(L)$	P_{u}	$P_{u} \mathcal{S}_{E}^{I}(L)$
$\sim \uparrow \downarrow R$	\rightarrow	
$\mathcal{S}\left(G_{5}\right)$	P_{u}	$P_{u} \mathcal{S}\left(G_{5}\right)$

Hence the mapping $F \mapsto P_{u} F$ is a topological isomorphism of $\mathcal{S}\left(G_{5}\right)$ onto its image.

Corollary 2.1. Every nonzero invariant differential operator on G_{5} has a tempered fundamental solution.

Proof : The transpose ${ }^{t} P_{u}$ of P_{u} is a continuous mapping of $\mathcal{S}^{\prime}\left(G_{5}\right)$ onto $\mathcal{S}^{\prime}\left(G_{5}\right)$. This means that for every tempered distribution T on G_{5} there is a tempered distribution E on G_{5} such that

$$
\begin{equation*}
P_{u} E=T \tag{18}
\end{equation*}
$$

Indeed the Dirac measure δ belongs to $\mathcal{S}^{\prime}\left(G_{5}\right)$.

3 Hypoellipticity

3.1. As in [12], the Lie algebra L_{5}, can be presented by the following matrix

$$
\left.L_{5}=\left(\begin{array}{cc}
M_{1}\left(X_{1}, X_{2}, X_{3}, X_{4}\right) & 0_{4 \times 4} \tag{19}\\
0_{4 \times 4} & M_{2}\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)
\end{array}\right) \right\rvert\, X_{i} \in \mathbb{R}
$$

where

$$
M_{1}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\left(\left[\left.\left(\begin{array}{cccc}
0 & -X_{1} & 0 & X_{4} \tag{20}\\
0 & 0 & -X_{1} & X_{3} \\
0 & 0 & 0 & X_{2} \\
0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, X_{i} \in \mathbb{R}\right]\right)
$$

and

$$
M_{2}\left(X_{1}, X_{2}, X_{3}, X_{5}\right)=\left(\left[\left.\left(\begin{array}{cccc}
0 & X_{2} & 0 & X_{5} \tag{21}\\
0 & 0 & X_{2} & -X_{3} \\
0 & 0 & 0 & -X_{1} \\
0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, X_{i} \in \mathbb{R}\right]\right)
$$

Each X_{i} can be represented as the matrix with $\delta_{i j}$. A matrix presentation of the group G_{4} is thus the matrix exponential of L_{5}

$$
\begin{align*}
G_{5} & \left.=\operatorname{Exp}\left(\begin{array}{cc}
M_{1}\left(X_{1}, X_{2}, X_{3}, X_{4}\right) & 0_{4 \times 4} \\
0_{4 \times 4} & M_{2}\left(X_{1}, X_{2}, X_{3}, X_{5}\right)
\end{array}\right) \right\rvert\, X_{i} \in \mathbb{R} \\
& =\left(\begin{array}{cc}
N_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & 0_{4 \times 4} \\
0_{4 \times 4} & N_{2}\left(x_{1}, x_{2}, x_{3}, x_{5}\right)
\end{array}\right) \tag{22}
\end{align*}
$$

where

$$
N_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\left[\left.\left(\begin{array}{cccc}
1 & -x_{1} & \frac{x_{1}^{2}}{2} & x_{4} \tag{23}\\
0 & 1 & -x_{1} & x_{3} \\
0 & 0 & 1 & x_{2} \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, X_{i} \in \mathbb{R}\right]\right)
$$

and

$$
N_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\left[\left.\left(\begin{array}{cccc}
1 & x_{2} & \frac{x_{2}^{2}}{2} & x_{5}-\frac{x_{1} x_{2}^{2}}{2} \tag{24}\\
0 & 1 & x_{2} & -x_{3}-x x \\
0 & 0 & 1 & -x_{1} \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, X_{i} \in \mathbb{R}\right]\right)
$$

3.2. It is easy to show, that is explicitly the basis of the Lie algebra is given by the following vector fields

$$
\begin{align*}
X_{1} & =\frac{\partial}{\partial_{x_{1}}}, X_{2}(x)=\frac{\partial}{\partial_{x_{2}}}-x_{1} \frac{\partial}{\partial_{x_{3}}}+\frac{x_{1}^{2}}{2} \frac{\partial}{\partial_{x_{4}}}+x_{1} x_{2} \frac{\partial}{\partial_{x_{5}}} \\
X_{3}(x) & =\frac{\partial}{\partial_{x_{3}}}-x_{1} \frac{\partial}{\partial_{x_{4}}}-x_{2} \frac{\partial}{\partial_{x_{5}}}, X_{4}=\frac{\partial}{\partial_{x_{4}}}, X_{5}=\frac{\partial}{\partial_{x_{5}}} \tag{25}
\end{align*}
$$

Any invariant differential operator on G_{4} has the form

$$
\begin{equation*}
P=\sum_{\alpha, \beta, \gamma, \sigma, \theta} a_{\alpha, \beta, \gamma, \sigma, \theta}\left(X_{1}\right)^{\alpha}\left(X_{2}\right)^{\beta}\left(X_{3}\right)^{\gamma}\left(X_{4}\right)^{\sigma}\left(X_{5}\right)^{\theta}, a_{\alpha, \beta, \gamma, \sigma, \theta} \in \mathbb{C} \tag{26}
\end{equation*}
$$

is solvable.
In particular the Laplacian operator on G_{5}

$$
\begin{equation*}
\Delta_{G_{5}}=\left(X_{1}\right)^{2}+\left(X_{2}\right)^{2}+\left(X_{3}\right)^{2}+\left(X_{4}\right)^{2}+\left(X_{5}\right)^{3} \tag{27}
\end{equation*}
$$

is solvable on the group G_{5}.Now, we consider on G_{5} the following vector fields

$$
\begin{align*}
Y_{1} & =\frac{\partial}{\partial_{x_{1}}}-\left(x_{2}+x_{3}\right) \frac{\partial}{\partial_{x_{3}}}-x_{3} \frac{\partial}{\partial_{x_{4}}}+x_{1} x_{2} \frac{\partial}{\partial_{x_{4}}}+\frac{x_{2}^{2}}{2} \frac{\partial}{\partial_{x_{5}}} \\
Y_{2} & =\frac{\partial}{\partial_{x_{2}}}-x_{1} \frac{\partial}{\partial_{x_{3}}}+\frac{x_{1}^{2}}{2} \frac{\partial}{\partial_{x_{4}}}+x_{1} x_{2} \frac{\partial}{\partial_{x_{5}}}-x_{3} \frac{\partial}{\partial_{x_{5}}} \\
Y_{3} & =\frac{\partial}{\partial_{x_{3}}}-x_{1} \frac{\partial}{\partial_{x_{4}}}-x_{1} \frac{\partial}{\partial_{x_{3}}}-x_{2} \frac{\partial}{\partial_{x_{5}}} \\
Y_{4} & =\frac{\partial}{\partial_{x_{4}}}, X_{5}=\frac{\partial}{\partial_{x_{5}}} \tag{28}
\end{align*}
$$

Our main results are
Theorem 3.1. The operator

$$
\begin{equation*}
Y^{2}=\sum_{i=1}^{5} Y_{i}^{2} \tag{29}
\end{equation*}
$$

is solvable and hypoelliptic on G_{5}
Proof: Define the mapping $\Gamma: \mathcal{D}^{\prime}\left(G_{5}\right) \rightarrow \mathcal{D}^{\prime}\left(G_{5}\right)$ as follows
$\Gamma \phi\left(x_{5}, x_{4}, x_{3}, x_{2}, x_{1}\right)=\phi\left(x_{5}+\frac{1}{2} x_{1} x_{2}^{2}-x_{2} x_{3}, x_{4}+\frac{1}{2} x_{1}^{2} x_{2}-x_{1} x_{3}, x_{3}-x_{1} x_{2}-x_{1} x_{3}, x_{2}, x_{1}\right)$
The operator Γ is hypoelliptic and has an inverse, which is

$$
\begin{equation*}
\Gamma^{-1} \phi\left(x_{5}, x_{4}, x_{3}, x_{2}, x_{1}\right)=\phi\left(x_{5}-\frac{1}{2} x_{1} x_{2}^{2}+x_{2}, x_{4}-\frac{1}{2} x_{1}^{2}+x_{1}, x_{3}+x_{1}, x_{2}, x_{1}\right) \tag{31}
\end{equation*}
$$

It is easy to show that the operator Γ verifies the following equation

$$
\begin{equation*}
\Gamma^{-1}\left(\partial_{x_{5} x_{5}}+\partial_{x_{4} x_{4}}+\partial_{x_{3} x_{3}}+\partial_{x_{2} x_{2}}+\partial_{x_{1} x_{1}}\right) \Gamma=\sum_{i=1}^{5} Y_{i}^{2} \tag{32}
\end{equation*}
$$

where $\partial_{x_{5} x_{5}}+\partial_{x_{4} x_{4}}+\partial_{x_{3} x_{3}}+\partial_{x_{2} x_{2}}+\partial_{x_{1} x_{1}}$ is the Laplace operator on \mathbb{R}^{5}. So the solvability and hypoellipticity of the operator $\sum_{i=1}^{5} Y_{i}^{2}$

References

[1] Alma Mater, On Solvability of PDEs Studiorum Universita di Bologna, Anno Accademico 2011/2012.
[2] U. N. Bassey and M. E. Egwe, "Non Solvability of Heisenberg Laplacian by Factorization," Journal of Mathematical Sciences, Vol. 21, No. 1, 2010, pp. 11-15.
[3] M. Bramanti, An Invitation to Hypoelliptic Operators and Hormander's Vector Fields, Series: Springer Briefs in Mathematics, 2014.
[4] L. Corwin, L.P. Rothschild, Necessary Conditions for Local Solvability of Homogeneous Left Invariant Operators on Nilpotent Lie Groups, Acta Math., 147 (1981), pp. 265-288.
[5] J. Dixmier, Sur les Repr'esentations Unitaries des Groupes de Lie Nilpotents. III, Canad.J. Math. 10 (1958), pp. 321-348
[6] L. Ehrenpreis, Solution of Some Problem Division, (I,II, III) Am. J. Math, vol 76,78,82.
[7] K. El-Hussein, Résolubilité Semi-Global dés Opérateurs Différéntiels Invariants sur les Groups des Déplacements, Pacific. J. Math. vol 144 No. 2, 1991.
[8] K. El- Hussein, Opérateurs Différéntiels Invariants sur les Groupes de Deplacements, Bull. Sc. Math. 2^{e} series 113,1989. p. 89-117.
[9] K. El- Hussein, Eigendistribution for an Invariant Differential Operator on the Affine Group. IJMA, 9-12-2009.
[10] K. El- Hussein, Note on the Solvability of the Lewy Operator, International Mathematical Forum, 4, 2009, no. 26, 1301-1304.
[11] K. El- Hussein, Note on the Solvability of the Mizohata Operator, International Mathematical Forum, 5, 2010, no. 37, 1833-1838.
[12] K. El- Hussein, Abstract Harmonic Analysis on Poincare Space-time, Book, Verlag Publisher, June 2015.
[13] M. Frentz, Topics on Subelliptic Parabolic Equations Structured on Hormander Vector Field, Mathematics, Ume University, 2012, Doctoral Dissertation.
[14] G. B. Folland, A Fundamental Solution for a Subelliptic Operator, Bulletin of the American Mathematical Society, Vol. 79, No. 2, 1973, pp. 373-376.
[15] L. Hormander, The Analysis of Linear Partial Operators I, SpringerVerlag, Berlin, 1983.
[16] L. Hormander, Hypoelliptic Second Order Differential Equations, Acta. Math. 119, 1967, 147-171.
[17] L. Hormander, A. Melin, Free Systems of Vector Fields, Ark. Mat. 16 (1978), 83-88.
[18] S. Helgason, Groups and Geometric Analysis, Academic Press, 1984.
[19] H. Lewy, An Example of a Smooth Linear Partial Differential Operator without Solution, Annals of Mathematics, Vol. 66, No. 2, 1957, pp. 155158.
[20] Mohamed Jleli, Mokhtar Kirane, Bessem Samet, Nonexistence Results for a Class of Evolution Equations in the Heisenberg Group, Fractional Calculus and Applied Analysis Volume 18, Issue 3, Jun 2015.
[21] D. M"uller and MARCOM.PELOSO, Non-Solvability for a Class of LeftInvariant Second-Order Differential Operators on the Heisenberg Group, Transaction of the American Mathematical Society Volume 355, Number 5, Pages 2047-2064 S 0002-9947(02)03232-4 Article electronically published on December 18, 2002
[22] B. Malgrange, Existence and Approximation des Solutions des équations aux Derivées Partielles et des équations de Convolutions, Ann. Inst. Fourier Grenoble, 6, 271, 1955.
[23] Nicolas Lerner, A Tribute to Lars Hormander, Matapli100, 25/4/2013.
[24] L. P. Rothschild, Local Solvability of Left Invariant Differential Operators on the Heisenberg Group, Proceedings of the American Mathematical Society, Vol. 74, No. 2, 1979, pp. 383-388.
[25] F. Treves, Linear Partial Differential Equations with Constant Coefficients, Gardon and Breach, 1966.
[26] Yakar Kannai, An Unsolvable Hypoelliptic Differential Operator, Israel Journal of Mathematics. September 1971,
[27] L. VENIERI, Hypoelliptic Differential Operators in Heisenberg Group, Università di Bologna, Anno Accademico 2012/2013.

